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ABSTRACT: Nanostructured metals are a promising class of radiation-tolerant
materials. A large volume fraction of grain boundaries (GBs) can provide plenty of
sinks for radiation damage, and understanding the underlying healing mechanisms
is key to developing more effective radiation tolerant materials. Here, we observe
radiation damage absorption by stress-assisted GB migration in ultrafine-grained
Au thin films using a quantitative in situ transmission electron microscopy
nanomechanical testing technique. We show that the GB migration rate is
significantly higher in the unirradiated specimens. This behavior is attributed to
the presence of smaller grains in the unirradiated specimens that are nearly absent
in the irradiated specimens. Our experimental results also suggest that the GB mobility is decreased as a result of irradiation. This
work implies that the deleterious effects of irradiation can be reduced by an evolving network of migrating GBs under stress.
KEYWORDS: in situ TEM nanomechanics, stress-assisted grain boundary migration, radiation damage healing, ultrafine grained Au

Material degradation resulting from irradiation1−4 is a
challenge that plagues a variety of industries, including

the nuclear energy sector1,5 and the aerospace industry.6 The
property changes originate from displacement cascades caused
by energetic particles such as neutrons, protons, and ions that
lead to nanometer-sized defect clusters in the form of vacancy
and interstitial loops, stacking-fault tetrahedra (SFT), or voids.
In contrast to conventional nuclear materials,7 nanostructured
metals and composites8 are currently investigated as a new
class of radiation damage tolerant materials,9 given that
interfaces, surfaces, and grain boundaries (GB) can serve as
sinks for radiation-induced defects.10,11 Nanocrystalline (NC)
and ultrafine-grained (UFG) metals have already shown
increased radiation tolerance12−15 due to the high volume
fraction of GBs.14,16−21 Molecular dynamics (MD) simulations
suggest that GBs annihilate nearby vacancies by re-emitting
interstitials22 or that regions of misfit within the boundary can
be sites for interstitial and SFT absorption,19 both of which
lead to the experimentally observed defect denuded zones on
either side of a boundary.20,23 In situ TEM irradiation
experiments provide direct observation of defect coalescence
and absorption at GBs20,24−30 which can be further analyzed to
investigate the relative sink strength of various GBs.31

Numerous reports have shown that irradiation also causes
GB migration (GBM) and grain coarsening,29,32 with MD
simulations proposing that migration is a response to defect
absorption.33,34 Additional reports have shown that radiation-
induced GBM can remove SFT,28 indicating that a migrating
GB serves as an effective sink for defects.

The aforementioned studies mainly focus on the role of GBs
during irradiation in the absence of mechanical stress. MD
simulations on bicrystals have highlighted that shear-coupled
GB motion can remove intragrain SFT35,36 and partially
dissolve voids,37 leading to an interstitial-loaded GB that can
remove defects in its path.38,39 Given that stress-assisted GBM
is a common deformation mechanism in NC and UFG
metals,40−43 these materials may have an additional “self-
healing” mechanism that could facilitate a further increase in
radiation tolerance when subject to mechanical stresses.
In this work, we demonstrate that stress-assisted GBM is

indeed an active healing mechanism at room temperature in
irradiated UFG gold (Au) thin films through direct observation
of migrating GBs absorbing irradiation-induced defects under
stress. To that end, we utilize a quantitative in situ TEM
nanomechanical testing technique based on a microelectro-
mechanical system (MEMS) device (see Supporting Informa-
tion for details of operation). In many cases, the defect-free
regions can support prolonged dislocation glide and dis-
location-dislocation interactions. Results also show a clear
difference in GBM behavior with irradiated specimens
exhibiting slower but steady GBM, whereas nonirradiated
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specimens experience rapid bursts in migration followed by
stagnation.
The nonirradiated specimens in this study have been

previously characterized and tested using a similar in situ
TEM nanomechanical testing technique.44−48 A portion of the
specimens were irradiated with 2.8 MeV Au4+ at room
temperature at Sandia National Laboratories to ∼0.7 displace-
ment per atom (dpa)49 (specimen fabrication and irradiation
details are described in Supporting Information). The initial
microstructure of the nonirradiated specimens (Figure 1a)
shows that the majority of grains are defect free, with a few of
the largest grains containing lattice dislocations and/or twin
boundaries (arrowed). The initial microstructure of the
irradiated specimens (Figure 1b) shows radiation damage
within all the grains (damage seen at higher magnification in
Figure 1c). Although not specifically characterized, the
radiation damage is likely to be small dislocation loops or
small SFT.50 Weak-beam dark-field (WBDF) was used to
count the visible defects and the defect spacing l was estimated
to be ∼15 nm (information on calculation provided in the
Supporting Information). An indexed diffraction pattern for
the irradiated Au (Figure S2) shows that the FCC structure is
retained. Grain size (d) distributions show that radiation-
induced grain growth results in a 33% increase in the average
grain size from 142 to 189 nm, due to the near-total removal of
grains smaller than 50 nm after irradiation (Figure 1d). This is
consistent with in situ TEM irradiation studies that show that
larger grains grow at the expense of smaller grains under
irradiation alone.29 Figure 1e shows the monotonic tensile

stress−strain curves for a nonirradiated and irradiated
specimen at a strain rate of ∼10−4 s−1.62 The monotonic
response of the irradiated specimen shows evidence of brittle
behavior with a linear elastic stress increase followed by failure
after attaining the ultimate tensile strength (UTS) of 663 MPa.
The nonirradiated counterpart yields at ∼480 MPa (0.2%
offset), reaches an UTS of 520 MPa, which is followed by a
gradual decrease in stress and eventual failure at plastic strain
εp = 4.9%. The post-mortem fracture surface of the non-
irradiated specimen (Figure 1f) indicates that the stress
decrease after UTS is likely due to slight necking and stable
crack growth promoted by the maximum shear stress
approximately along the 45° direction with respect to the
vertical loading axis. Similarly, Figure 1g confirms the brittle-
type unstable crack growth that occurred in the irradiated film,
with the fracture surface at about 90° from the vertical loading
axis. The observed strengthening effect of the irradiated
specimens is consistent with the in situ TEM observations of
dislocation-radiation defect interactions, with the radiation
defects serving as obstacles to dislocation glide.51 A detailed
description and TEM based characterization of dislocation
pinning is provided in Figure S4 (Movie S1). An additional
example of intragranular plasticity is shown in Movie S2 and
illustrates the significant restriction in dislocation glide due to
radiation damage. In all of the irradiated specimens tested,
there is no indication that defect-free channels form from
repeated intragranular dislocation glide, which is a variation
from what is typically observed in irradiated coarse-grained
metals.52,53 This likely indicates that there is an insufficient

Figure 1. Initial microstructure and tensile properties of irradiated and nonirradiated UFG Au films. TEM micrographs of (a) nonirradiated Au film
(white arrowheads identify nanotwins or dislocations within grains) and (b) irradiated Au film. Grain interiors contain radiation damage. Scale bar
is the same as in part a. (c) Bright-field TEM micrograph of a grain interior of irradiated film to exhibit radiation damage. (d) Cumulative grain size
distribution of nonirradiated (black circles) and irradiated (magenta diamonds) films prior to straining. (e) Stress−strain curves from in situ TEM
tensile tests of nonirradiated and irradiated specimens. Both were conducted at a strain rate of ∼10−4s−1. Post mortem TEM micrographs of a (f)
nonirradiated and (g) irradiated specimen tested under tension to show the differences in fracture surface.
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number of passing dislocations to facilitate complete removal
of radiation defects within localized regions.
In addition to restricted dislocation glide, stress-induced

GBM is another active deformation mechanism in the
irradiated specimens. Evidence of radiation damage removal
via GBM is illustrated in Figure 2 where the outlined grain
undergoes substantial grain growth during a stress-relaxation
experiment. As the GB migrated, it absorbed the radiation
defects in the neighboring grains, creating defect-free regions.
This is clearly seen in Figure 2b where there is a region with
radiation defects (where the original grain was) in addition to a
region without any radiation damage as the GBs have migrated
outward in the direction indicated by arrows. This image was
taken after a 28 min-long series of stress-relaxation segments in
which a maximum stress of 530 MPa was achieved (the
stresses refer to the applied far-field values). Additional in situ
TEM observations of this growing grain were made throughout
another series of stress-relaxation segments, during which the
GBs continued to migrate (Figure 2c−f). The outlined GB
migrates at an average velocity of 0.03 nm/s (for σ < 530
MPa), not including the one instance of a rapid jump in GBM
occurring at a maximum velocity of 34 nm/s during the
transition from part b to part c of Figure 2 (Movie S3). This
maximum velocity did not occur simultaneous to an applied
stress increase, indicating a different factor contributed to the
accelerated migration. In Figure 2c, a pinned dislocation is
indicated by the arrowhead and 30 s later is depinned and
glides unrestricted through the defect-free region (Figure 2d
and Movie S4). For the transition in Figure 2c−e (Movie S4),
migration velocities for each GB were determined by
measuring the change in GB location in 30-s intervals (Figure
S5). At an applied stress level of 550 MPa, the average GBM

velocities range from 0.03 to 0.07 nm/s. Upon increase of the
applied stress to 650 MPa (nearing the UTS of irradiated
specimens, see Figure 1e), some average GBM velocities
increase by more than 1 order of magnitude (to values ranging
from 0.32 to 0.95 nm/s), suggesting that the local stresses may
be significantly larger. After 51 min under tension, extensive
GBM has led to a large defect free region that can support
unrestricted dislocation glide and dislocation-dislocation
interactions. This is seen in Figure 2f where there are multiple
dislocations interacting with a partial dislocation within the
defect-free region (Movie S5). The majority of the radiation
defects remain within the original grain outline. This type of
behavior is similar to grains distributed throughout the
specimen gauge length; and in total, 14% of the specimen
area was cleared of defects after this experiment. Additional
details on this microstructural evolution and the accompanying
movies are included in the Supporting Information. Figure S6
includes a magnified view of a migrating GB with evidence of
disconnection glide within GB (Movie S6).
The above results provide experimental evidence that a

boundary migrating under an applied stress can effectively
remove radiation damage, confirming previous models that
stress-assisted GBM can lead to SFT absorption.35−38 It has
been well documented that GBs absorb radiation defects under
static conditions (owing to the increased radiation tolerance in
NC/UFG metals), but the above results unambiguously
highlight that a mechanical stress can activate an additional
mechanism for damage removal. While GBs are known to act
as diffusional sinks to radiation defects,54 this effect is typically
localized to within nanometers of the GBs, much smaller than
the tens of nanometers cleared of defects seen in the present
study. The percentage of the area that is cleared of defects

Figure 2. Stress-assisted GB migration leading to radiation damage healing and defect-free regions capable of supporting extensive dislocation glide.
(a) Microstructure prior to an applied load with a single grain outlined. Direction of applied load (σ) indicated by vertical arrows. (b) GB migration
has led to grain growth of the outlined grain resulting in defect-free regions where GB migration occurred. The radiation defects remain where the
original grain was (no migrating GB passed through this region). Arrows indicate direction of continued GB migration. (c) GB migration continues
and leads to a further increase in grain size and defect-free region. Arrow indicates a dislocation pinned on radiation defects. (d) The indicated
dislocation becomes depinned and glides unrestricted in the radiation-free region until being absorbed by a nearby GB. (e) Continued GB
migration leading to an increasing defect-free area. (f) The defect-free region can now support dislocation-dislocation interactions, indicated by
both arrowheads. Time stamp in each indicates the total time (in minutes) under a tensile stress (both during loading and stress-relaxation).
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depends on the time under tension and stress levels (cleaned
area percentage typically ranging between 2 and 15%). For
example, 2.6% of the gauge area is cleared of radiation damage
during the monotonic test shown in Figure 1e (total time
under tension was 2.5 min) compared to the 14% that was
cleaned after 51 min under tension in Figure 2. This indicates
that pausing the loading prior to failure is necessary to allow
for more time to promote and to observe the stress-assisted
GBM and defect clearing. In this study, defect-free regions are
always observed in the wake of a migrating GB, indicating that
a wide range of GB types can absorb radiation defects during
migration. This mechanism implies that the deleterious effects
of irradiation on the mechanical properties of NC and UFG
metals can be further reduced by an evolving network of
migrating GBs when subject to mechanical loading. It is
therefore crucial to quantify the effects of this healing
mechanism on the evolving microstructure and resulting
mechanical properties. Our quantitative in situ TEM technique
is ideally suited, as it allows for direct quantification of
microstructure evolution as a result of stress-assisted GBM
with and without irradiation damage.
The effect of irradiation on GBM was further studied by

comparing the GBM behavior for specific sets of grains in both
irradiated and nonirradiated films. Figure 3 (Movie S7) is an
example of such in situ TEM experiment consisting of
successive stress-relaxation segments for an irradiated film
where the outlined grain was tracked until specimen failure.
The GBs marked 1 and 2 gradually migrate (red arrows
indicate migration direction) while absorbing the radiation

defects within the grain. This is clearly seen in Figure 3e, where
the original grain outline is overlaid on the final microstructure
to show the change in grain shape due to GBM. The majority
of GB1 migrates at a steady velocity of 0.04−0.06 nm/s to a
total migration distance of 83 nm (the right-most portion of
this GB migrates an additional 31 nm at a maximum rate of
0.25 nm/s to result in the curved boundary seen in Figure 3e).
The progression of GBs 1 and 2 migration, along with 4 other
boundaries recorded simultaneously, can be seen in Figure 3f
(curves for GB 1 and 2 are the gray and green curves,
respectively). The average migration velocity (nm/s) for each
tracked boundary is marked to the right of each curve. The
instantaneous stress levels were measured and are displayed on
the secondary axis. The stress ranged from 309 to 570 MPa
with 22 instances of stress increase due to reloading in between
relaxation segments (full stress−strain curve shown in Figure
S7). For the majority of the boundaries, migration occurs at a
relatively steady pace with average velocities ranging from
0.007 to 0.06 nm/s, which is consistent with the measured
velocities for in Figure S5 at an applied stress of around 550
MPa. There is only one instance in which a GB jumped 16 nm
at a maximum “jump” velocity of 8.1 nm/s. This is visualized
by the large jump in migration distance in the brown data
around 500 s and was associated with the collapsing of a
smaller grain.
A similar experiment was conducted on a nonirradiated

specimen to identify the main differences in GBM for
irradiated versus nonirradiated films. In general, the GBM
occurs at a faster rate in the nonirradiated films which

Figure 3. “Steady” grain boundary migration documented in irradiated film during repeated stress-relaxation experiment. (a) Microstructure prior
to an applied load (in direction indicated by white arrows). The outlined grain is one of the grains tracked throughout the experiment with two
migrating boundaries labeled 1 and 2. The red arrows indicate direction of GB migration. (b−d) the same grain shown in 10 min increments, (e)
final microstructure with the original grain outline from part a overlaid to show the change in grain size and shape due to GB migration. The scale
bar in part a is the same for all frames. (f) GB migration distance data throughout the experiment from six boundaries recorded simultaneously
(data for GB 1 (gray/magenta) and GB 2 (green)). The instantaneous far-field stress levels are shown with the stress scale on the right y axis.
Average velocity (nm/s) is recorded to the right of each curve. Time is given in terms of time since initial recording of the grains, which began 3
min after the initial load was applied.
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facilitates the GBs reaching a stable position within the time
frame of an experiment. This is shown in Figure 4, where the
outlined grain undergoes significant stress-induced GBM in the
direction of the red arrows to result in the larger grain seen in
Figure 4b,c with the final microstructure shown in Figure 4d
(Movie S8). Migration data on these particular GBs as well as
four additional migrating GBs are shown in Figure 4e. The
total migration distances for the GBs associated with the
growing grain in Figure 4a−d varied from 153 nm to a
maximum migration of 270 nm over 25 min, with a maximum
jump velocity of 85 nm/s corresponding to the first large jump
in migration distance in the red line around 170 s. The four
additional migrating GBs that were tracked simultaneously
migrate quickly within the first few minutes and then stagnate,
with migration velocities ranging from 0.03 to 0.12 nm/s
(before stagnation). The instantaneous stress levels were not
documented in this experiment, but the stress levels at different
times were determined by measuring the displacement of the
load sensor beams manually using TEM imaging and are
indicated by the data points on the secondary stress axis in
Figure 4e. The initial migration occurs at a far-field stress level
of 340 MPa, with the stress recorded to vary between 197 to
367 MPa. The vertical gray dashed lines represent instances in
which the stress is increased during a reloading segment. Half
of the recorded GBs are sensitive to the loading and show an
increase in migration speed directly after a reloading segment
(vertical dashed line) which is followed by stagnation until the
stress is increased again. The velocity of one of the GBs (red
data) after the final three reloading segments until stagnation is
0.60, 0.22, 0.43 nm/s.
Comparing the migration data (Figure 3f and Figure 4e)

indicates that the majority of boundaries in the nonirradiated

film migrate at faster velocities than the boundaries in the
irradiated film. Analyzing the first 5 min only (Figure 5a)
clearly shows that all of the tracked boundaries in the
nonirradiated film experience faster migration leading to larger
migration distances compared to the boundaries in the
irradiated films. For example, the maximum migration velocity
within the first 5 min in the irradiated film was 0.03 nm/s (gray
data) whereas the migration velocities in the nonirradiated film
varied from 0.04 to 0.30 nm/s despite the initial stress levels
being comparable for both specimens. Figure 5b displays the
“instantaneous” velocity for three GBs throughout the
experiments shown in Figure 3 and Figure 4. Representative
GBs were chosen to show the characteristic migration behavior
for each specimen type. Comparing the velocity throughout
the experiment clearly illustrates that the nonirradiated GBs
(dashed) experience higher velocities before reaching stable
equilibrium positions (i.e., velocity is zero). In contrast, the
irradiated boundary (solid) continues migration at a relatively
constant velocity. The instances of large velocity increase in the
nonirradiated film occurring around 600, 970, and 1300 s
corresponds to moments when the applied stress was reloaded
to a higher value. The schematics shown in Figure 5, parts c
and d, provide a visual comparison of the difference in GBM
behavior in the grains analyzed in Figure 4 and Figure 3,
respectively. The schematics show the original GB trace (solid)
and subsequent GB trace outlines (dashed) in 10 min
increments at the same length scale. The far-field applied
stress ranges for the 20 min intervals are displayed below the
schematics and indicate that the nonirradiated grains undergo
stress-assisted GBM at larger velocities despite the fact that the
applied stresses are on average lower than that in the irradiated
films.

Figure 4. “Rapid” stress-induced grain boundary migration in nonirradiated films during a stress-relaxation experiment. (a) Initial microstructure of
a collection of grains. The outlined grain undergoes significant grain growth due to GB migration in the direction indicated by red arrows. (b, c)
The same grain in 10 min increments. (d) Final grain microstructure with original grain outline from part a overlaid to show the significant stress-
induced grain growth. (e) GB migration distance for different boundaries tracked simultaneously. The GBs associated with the grain in parts a−d
are shown in red, gray, orange, and light purple data. The manually measured stress levels are plotted on the secondary axis. Vertical gray lines
represent reload instances in which the stress was increased. Time is given in terms of seconds since first recording of given set of grains which
occurred 2.5 min after load was first applied. The velocity of the GB represented by the red data points is shown for the final three reloading
segments (i.e., velocity of the GB as it migrates after promoted by an increase in stress until stagnation again).
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Using the GB velocity information shown in Figures 3− 5 to
conclude the effect of irradiation on GB mobility would require
knowledge of the driving force for GBM (since velocity is the
product of mobility and driving force), which is challenging to
quantify accurately.55−57 Qualitatively, we believe that the
increased GB velocities for the as-deposited, unirradiated Au
films are related to an increased driving force associated with
the smaller grains that are only present in these films. As stress
is applied, small grains deform elastically whereas larger grains
achieve lower stresses by deforming plastically. The size-
dependent yield stress has been proposed as a size-dependent
driving force for grain coarsening and can explain the specific
observation that large grains (with lower strain energy
densities) grow while small grains (with higher strain energy
densities) shrink and disappear.58,59 This explanation is
consistent with our observations of “rapid” grain growth for
the unirradiated Au films associated with the disappearance of
the smaller grains. In addition, “rapid” grain growth is not
observed for unirradiated, annealed specimens (350 °C for 30
min) that do not have small grains (<50 nm) initially present
(Figure S8a,c), which is also consistent with the notion that
small grains are associated with larger driving force for GBM
(and therefore increased velocities). Given the absence of small

grains in irradiated samples and nonirradiated annealed
samples, comparing the average GBM velocities (Figure S8b)
suggests that the irradiated GBs have lower mobilities (similar
velocities, larger applied stresses for the irradiated specimen).
Lower GB mobilities could be attributed to increased disorder
of the GB plane as the GB absorbs the radiation defects that
could make disconnection motion more “sluggish”, or that the
GBs are being temporarily pinned by the radiation defects.
Additional experiments, particularly on irradiated annealed
specimens, are required to further investigate the effect of
irradiation on GB mobility.
It is important to note that the observed GBM behavior in

the irradiated films exhibit similarities with dynamic recrystal-
lization, which is typically observed in terms of newly
nucleated (defect-free) grains growing at the expense of
neighboring grains with high defect density.60 However, we
observe stress-assisted GBM with the unirradiated films,
indicating that migration occurs without the additional
defect-removal driving force and therefore it is likely that
stress can also trigger GBM in irradiated films, as suggested
in.35 Furthermore, in Figure 2, the grain that grew was not a
small defect-free embryo, but instead had a high density of
defects similar to the surrounding grains. In conclusion, this

Figure 5. Comparison of stress-assisted grain boundary migration distances and velocity in irradiated and nonirradiated Au films. (a) GB migration
distance data from the irradiated film in Figure 3 (diamonds) and nonirradiated specimen in Figure 4 (circles) scaled to show first 5 min only. The
stress levels for both are shown with the stress scale on the right y axis to show that the initial stress levels are similar followed by an increase in
stress in the irradiated film and decrease in stress in nonirradiated. The average velocity is provided for each nonirradiated GB showing a range of
0.04−0.30 nm/s. (b) “Instantaneous” velocity for one GB in irradiated specimen (Figure 3) and two GBs in nonirradiated specimen (Figure 4).
Each GB was chosen to display characteristic behavior for each specimen type. “Instantaneous” velocity is defined as the velocity for a 30−60 s
interval. The schematic of the grain shape change outline of (c) nonirradiated grain in Figure 4 and (d) irradiated grain in Figure 3 to compare
migration behavior at the same length scale (scale bar the same for both). The solid outline represents the initial grain size with the two dashed
outlines representing the grain shape after 10 and 20 min. The red arrow indicates direction of migration. The black “×” represents radiation
damage. The stress ranges during migration are provided underneath the schematics.
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study provides striking evidence that stress-assisted GBM
serves as an effective mechanism of defect removal in irradiated
NC and UFG metals. This indicates that applying a small stress
(below the yield stress) sufficient enough to promote GBM
could be implemented to facilitate “self-healing” of irradiated
materials at the expense of moderate plastic deformation.
Future studies will involve characterizing the stress-assisted
GBM in detail, including at elevated temperatures, with
particular interest in understanding how the irradiation-
induced defects influence the GB structure and the GBM
behavior in order to optimize the defect clearing capacity of
NC and UFG metals.
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